重庆时时彩开户  »  考研  »  考研数学  »  考研数学线代提高班
考研数学线代提高班
名称:考研数学线代提高班
分类:考研数学
主讲:    
TAG:考研  数学  线性代数    
时间:2014-02-12 16:38
收藏:搜藏到百度  收藏到QQ书签
考研数学线代提高班相关介绍

在考研数学中,线性代数概念多、定理多、符号多、运算规律多、内容相互纵横交错,相对于高等数学和概率论知识点比较多,所以需要重点进行复习。下面我们就对其复习方法进行了解。

考研数学线性代数复习重点应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三。为了让考生在复习中能将线性代数提高到一个新的层次,这里给大家重点说一下历年考研重点及复习思路。

  1。行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

  2。矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次:

  (1)矩阵的符号运算

  (2)具体矩阵的数值运算

  3。关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

  4。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

  5。于特征值、特征向量,要求基本上有三点:

  (1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。

  (2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。

  (3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及An。

  6。将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:

  (1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。

  (2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

广告合作关于我们免责声明GOOGLE地图百度地图最近更新RRS订阅
版权所有:星火视频教程网 | 苏ICP备15005240号 | Email:njjqs2003#126.com
Copyright © 2009 www.hbyjob.com All rights reserved
合作: 皇冠现金代理 申博开户 重庆时时彩开户